\(\int \sec ^4(c+d x) (a \cos (c+d x)+b \sin (c+d x))^3 \, dx\) [66]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 103 \[ \int \sec ^4(c+d x) (a \cos (c+d x)+b \sin (c+d x))^3 \, dx=\frac {a^3 \text {arctanh}(\sin (c+d x))}{d}-\frac {3 a b^2 \text {arctanh}(\sin (c+d x))}{2 d}+\frac {3 a^2 b \sec (c+d x)}{d}-\frac {b^3 \sec (c+d x)}{d}+\frac {b^3 \sec ^3(c+d x)}{3 d}+\frac {3 a b^2 \sec (c+d x) \tan (c+d x)}{2 d} \]

[Out]

a^3*arctanh(sin(d*x+c))/d-3/2*a*b^2*arctanh(sin(d*x+c))/d+3*a^2*b*sec(d*x+c)/d-b^3*sec(d*x+c)/d+1/3*b^3*sec(d*
x+c)^3/d+3/2*a*b^2*sec(d*x+c)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {3169, 3855, 2686, 8, 2691} \[ \int \sec ^4(c+d x) (a \cos (c+d x)+b \sin (c+d x))^3 \, dx=\frac {a^3 \text {arctanh}(\sin (c+d x))}{d}+\frac {3 a^2 b \sec (c+d x)}{d}-\frac {3 a b^2 \text {arctanh}(\sin (c+d x))}{2 d}+\frac {3 a b^2 \tan (c+d x) \sec (c+d x)}{2 d}+\frac {b^3 \sec ^3(c+d x)}{3 d}-\frac {b^3 \sec (c+d x)}{d} \]

[In]

Int[Sec[c + d*x]^4*(a*Cos[c + d*x] + b*Sin[c + d*x])^3,x]

[Out]

(a^3*ArcTanh[Sin[c + d*x]])/d - (3*a*b^2*ArcTanh[Sin[c + d*x]])/(2*d) + (3*a^2*b*Sec[c + d*x])/d - (b^3*Sec[c
+ d*x])/d + (b^3*Sec[c + d*x]^3)/(3*d) + (3*a*b^2*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2686

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 2691

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sec[e +
 f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] - Dist[b^2*((n - 1)/(m + n - 1)), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 3169

Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_.), x_Sym
bol] :> Int[ExpandTrig[cos[c + d*x]^m*(a*cos[c + d*x] + b*sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] &&
 IntegerQ[m] && IGtQ[n, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \int \left (a^3 \sec (c+d x)+3 a^2 b \sec (c+d x) \tan (c+d x)+3 a b^2 \sec (c+d x) \tan ^2(c+d x)+b^3 \sec (c+d x) \tan ^3(c+d x)\right ) \, dx \\ & = a^3 \int \sec (c+d x) \, dx+\left (3 a^2 b\right ) \int \sec (c+d x) \tan (c+d x) \, dx+\left (3 a b^2\right ) \int \sec (c+d x) \tan ^2(c+d x) \, dx+b^3 \int \sec (c+d x) \tan ^3(c+d x) \, dx \\ & = \frac {a^3 \text {arctanh}(\sin (c+d x))}{d}+\frac {3 a b^2 \sec (c+d x) \tan (c+d x)}{2 d}-\frac {1}{2} \left (3 a b^2\right ) \int \sec (c+d x) \, dx+\frac {\left (3 a^2 b\right ) \text {Subst}(\int 1 \, dx,x,\sec (c+d x))}{d}+\frac {b^3 \text {Subst}\left (\int \left (-1+x^2\right ) \, dx,x,\sec (c+d x)\right )}{d} \\ & = \frac {a^3 \text {arctanh}(\sin (c+d x))}{d}-\frac {3 a b^2 \text {arctanh}(\sin (c+d x))}{2 d}+\frac {3 a^2 b \sec (c+d x)}{d}-\frac {b^3 \sec (c+d x)}{d}+\frac {b^3 \sec ^3(c+d x)}{3 d}+\frac {3 a b^2 \sec (c+d x) \tan (c+d x)}{2 d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(293\) vs. \(2(103)=206\).

Time = 1.69 (sec) , antiderivative size = 293, normalized size of antiderivative = 2.84 \[ \int \sec ^4(c+d x) (a \cos (c+d x)+b \sin (c+d x))^3 \, dx=\frac {36 a^2 b-10 b^3-6 a \left (2 a^2-3 b^2\right ) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+12 a^3 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-18 a b^2 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {9 a b^2}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {b^3}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+2 b \left (18 a^2-b^2+2 b^2 \cos (c+d x)+\left (18 a^2-5 b^2\right ) \cos (2 (c+d x))\right ) \sec ^3(c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )-\frac {9 a b^2}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {b^3}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}}{12 d} \]

[In]

Integrate[Sec[c + d*x]^4*(a*Cos[c + d*x] + b*Sin[c + d*x])^3,x]

[Out]

(36*a^2*b - 10*b^3 - 6*a*(2*a^2 - 3*b^2)*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 12*a^3*Log[Cos[(c + d*x)/2
] + Sin[(c + d*x)/2]] - 18*a*b^2*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (9*a*b^2)/(Cos[(c + d*x)/2] - Sin[
(c + d*x)/2])^2 + b^3/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2 + 2*b*(18*a^2 - b^2 + 2*b^2*Cos[c + d*x] + (18*a
^2 - 5*b^2)*Cos[2*(c + d*x)])*Sec[c + d*x]^3*Sin[(c + d*x)/2]^2 - (9*a*b^2)/(Cos[(c + d*x)/2] + Sin[(c + d*x)/
2])^2 + b^3/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2)/(12*d)

Maple [A] (verified)

Time = 1.18 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.13

method result size
parts \(\frac {a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {b^{3} \left (\frac {\sec \left (d x +c \right )^{3}}{3}-\sec \left (d x +c \right )\right )}{d}+\frac {3 a \,b^{2} \left (\frac {\sin \left (d x +c \right )^{3}}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {3 a^{2} b \sec \left (d x +c \right )}{d}\) \(116\)
derivativedivides \(\frac {a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+\frac {3 a^{2} b}{\cos \left (d x +c \right )}+3 a \,b^{2} \left (\frac {\sin \left (d x +c \right )^{3}}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+b^{3} \left (\frac {\sin \left (d x +c \right )^{4}}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin \left (d x +c \right )^{4}}{3 \cos \left (d x +c \right )}-\frac {\left (2+\sin \left (d x +c \right )^{2}\right ) \cos \left (d x +c \right )}{3}\right )}{d}\) \(146\)
default \(\frac {a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+\frac {3 a^{2} b}{\cos \left (d x +c \right )}+3 a \,b^{2} \left (\frac {\sin \left (d x +c \right )^{3}}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+b^{3} \left (\frac {\sin \left (d x +c \right )^{4}}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin \left (d x +c \right )^{4}}{3 \cos \left (d x +c \right )}-\frac {\left (2+\sin \left (d x +c \right )^{2}\right ) \cos \left (d x +c \right )}{3}\right )}{d}\) \(146\)
parallelrisch \(\frac {-18 a \left (a^{2}-\frac {3 b^{2}}{2}\right ) \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+18 a \left (a^{2}-\frac {3 b^{2}}{2}\right ) \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\left (18 a^{2} b -4 b^{3}\right ) \cos \left (3 d x +3 c \right )+\left (36 a^{2} b -12 b^{3}\right ) \cos \left (2 d x +2 c \right )+18 \sin \left (2 d x +2 c \right ) a \,b^{2}+\left (54 a^{2} b -12 b^{3}\right ) \cos \left (d x +c \right )+36 a^{2} b -4 b^{3}}{6 d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(200\)
risch \(-\frac {b \,{\mathrm e}^{i \left (d x +c \right )} \left (9 i a b \,{\mathrm e}^{4 i \left (d x +c \right )}-18 a^{2} {\mathrm e}^{4 i \left (d x +c \right )}+6 b^{2} {\mathrm e}^{4 i \left (d x +c \right )}-36 a^{2} {\mathrm e}^{2 i \left (d x +c \right )}+4 b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-9 i a b -18 a^{2}+6 b^{2}\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {a^{3} \ln \left (i+{\mathrm e}^{i \left (d x +c \right )}\right )}{d}-\frac {3 a \,b^{2} \ln \left (i+{\mathrm e}^{i \left (d x +c \right )}\right )}{2 d}-\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}+\frac {3 a \,b^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}\) \(213\)
norman \(\frac {\frac {\left (12 a^{2} b -8 b^{3}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{d}-\frac {18 a^{2} b -4 b^{3}}{3 d}-\frac {\left (6 a^{2} b +4 b^{3}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{d}-\frac {3 a \,b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {9 a \,b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{d}-\frac {6 a \,b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{d}+\frac {6 a \,b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{d}+\frac {9 a \,b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{d}+\frac {3 a \,b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{d}-\frac {6 a^{2} b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{d}-\frac {6 a^{2} b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{d}+\frac {4 b \left (9 a^{2}-8 b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{3 d}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{3} \left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3}}-\frac {a \left (2 a^{2}-3 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {a \left (2 a^{2}-3 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(350\)

[In]

int(sec(d*x+c)^4*(cos(d*x+c)*a+b*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

a^3/d*ln(sec(d*x+c)+tan(d*x+c))+b^3/d*(1/3*sec(d*x+c)^3-sec(d*x+c))+3*a*b^2/d*(1/2*sin(d*x+c)^3/cos(d*x+c)^2+1
/2*sin(d*x+c)-1/2*ln(sec(d*x+c)+tan(d*x+c)))+3*a^2*b*sec(d*x+c)/d

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.19 \[ \int \sec ^4(c+d x) (a \cos (c+d x)+b \sin (c+d x))^3 \, dx=\frac {3 \, {\left (2 \, a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (2 \, a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 18 \, a b^{2} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 4 \, b^{3} + 12 \, {\left (3 \, a^{2} b - b^{3}\right )} \cos \left (d x + c\right )^{2}}{12 \, d \cos \left (d x + c\right )^{3}} \]

[In]

integrate(sec(d*x+c)^4*(a*cos(d*x+c)+b*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/12*(3*(2*a^3 - 3*a*b^2)*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*(2*a^3 - 3*a*b^2)*cos(d*x + c)^3*log(-sin(d
*x + c) + 1) + 18*a*b^2*cos(d*x + c)*sin(d*x + c) + 4*b^3 + 12*(3*a^2*b - b^3)*cos(d*x + c)^2)/(d*cos(d*x + c)
^3)

Sympy [F(-1)]

Timed out. \[ \int \sec ^4(c+d x) (a \cos (c+d x)+b \sin (c+d x))^3 \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**4*(a*cos(d*x+c)+b*sin(d*x+c))**3,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.15 \[ \int \sec ^4(c+d x) (a \cos (c+d x)+b \sin (c+d x))^3 \, dx=-\frac {9 \, a b^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} + \log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 6 \, a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - \frac {36 \, a^{2} b}{\cos \left (d x + c\right )} + \frac {4 \, {\left (3 \, \cos \left (d x + c\right )^{2} - 1\right )} b^{3}}{\cos \left (d x + c\right )^{3}}}{12 \, d} \]

[In]

integrate(sec(d*x+c)^4*(a*cos(d*x+c)+b*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/12*(9*a*b^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) + log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) - 6*a^3*(
log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) - 36*a^2*b/cos(d*x + c) + 4*(3*cos(d*x + c)^2 - 1)*b^3/cos(d*x
+ c)^3)/d

Giac [A] (verification not implemented)

none

Time = 0.38 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.66 \[ \int \sec ^4(c+d x) (a \cos (c+d x)+b \sin (c+d x))^3 \, dx=\frac {3 \, {\left (2 \, a^{3} - 3 \, a b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (2 \, a^{3} - 3 \, a b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (9 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 18 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 36 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 12 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 9 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 18 \, a^{2} b + 4 \, b^{3}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \]

[In]

integrate(sec(d*x+c)^4*(a*cos(d*x+c)+b*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/6*(3*(2*a^3 - 3*a*b^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(2*a^3 - 3*a*b^2)*log(abs(tan(1/2*d*x + 1/2*c)
 - 1)) + 2*(9*a*b^2*tan(1/2*d*x + 1/2*c)^5 - 18*a^2*b*tan(1/2*d*x + 1/2*c)^4 + 36*a^2*b*tan(1/2*d*x + 1/2*c)^2
 - 12*b^3*tan(1/2*d*x + 1/2*c)^2 - 9*a*b^2*tan(1/2*d*x + 1/2*c) - 18*a^2*b + 4*b^3)/(tan(1/2*d*x + 1/2*c)^2 -
1)^3)/d

Mupad [B] (verification not implemented)

Time = 25.26 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.55 \[ \int \sec ^4(c+d x) (a \cos (c+d x)+b \sin (c+d x))^3 \, dx=-\frac {\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (3\,a\,b^2-2\,a^3\right )}{d}-\frac {6\,a^2\,b-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (12\,a^2\,b-4\,b^3\right )-\frac {4\,b^3}{3}+3\,a\,b^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+6\,a^2\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-3\,a\,b^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \]

[In]

int((a*cos(c + d*x) + b*sin(c + d*x))^3/cos(c + d*x)^4,x)

[Out]

- (atanh(tan(c/2 + (d*x)/2))*(3*a*b^2 - 2*a^3))/d - (6*a^2*b - tan(c/2 + (d*x)/2)^2*(12*a^2*b - 4*b^3) - (4*b^
3)/3 + 3*a*b^2*tan(c/2 + (d*x)/2) + 6*a^2*b*tan(c/2 + (d*x)/2)^4 - 3*a*b^2*tan(c/2 + (d*x)/2)^5)/(d*(3*tan(c/2
 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 - 1))